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Exact solution of the asymmetric exclusion model with particles of arbitrary size
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A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture
of molecules with distinct sizess50,1,2, . . . , in units of lattice space, diffuses asymmetrically on the lattice.
A related surface growth model is also presented. Variations of the distribution of the molecules sizes may
change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and
the dynamical critical exponentz is calculated from the finite-size corrections of the mass gap of the related
quantum chain. Our results show that for an arbitrary distribution of molecules, the dynamical critical behavior
is on the Kardar-Parizi-Zhang universality.@S1063-651X~99!01607-4#

PACS number~s!: 02.50.Ey, 05.70.Ln, 64.60.Ht
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I. INTRODUCTION

The asymmetric simple exclusion model@1# is a one-
dimensional stochastic model that describes the time fluc
tions of particles diffusing asymmetrically on the lattice.
we interpret an occupied site ass i

z511 and a vacant site a
s i

z521, the time evolution of the probability distribution o
particles is given by the following asymmetricXXZ Hamil-
tonian:

H52(
i 51

N

@e1s j
2s j 11

1 1e2s j
1s j 11

2 1 1
4 ~12s j

zs j 11
z !#,

~1!

where N is the number of lattice sites ands i
65(sx

6 isy)/2 are the raising and lowering Pauli operators. Pe
odic boundary conditions are imposed ande1 and e2 (e1

1e251) are the transition probabilities for having a motio
to the right and to the left, respectively. The physical pro
erties of this non-Hermitian quantum chain as well as
related asymmetric six-vertex model are still under extens
investigations@2–4#. This model also describes the surfa
fluctuations in a growth model known as a single-step mo
@5,6# where (s i

z1s i 11
z )/2521,0,1 is the height difference

between nearest-neighbor steps located at the odd-
integer sites (i 21/2)(i 51,2, . . . ). Themaster equation de
fining the Hamiltonian~1! can also be interpreted@7# as the
discretized version of the noisy Burges equation or
Kardar-Parisi-Zhang~KPZ! equation@8# governing the mo-
tion of the height of growing surfaces whose local grow
velocity depends nonlinearly on the local shape. The conn
tion between the scaling behavior of the structure funct
@6,9# of the stochastic model and the finite-size depende
of the real part of the mass gapGN gives us the dynamica
critical exponentz,

Re~GN!;N2z.
PRE 601063-651X/99/60~1!/79~10!/$15.00
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This connection enabled Gwa and Spohn@7# to explore the
Bethe-ansatz solution of Eq.~1! and calculate exactly the
exponentz5 3

2 in the highly anisotropic limite250. Subse-
quently, Kim @10# extended this result fore2.0.

In a previous paper@11# we observed, in connection with
a model for a strongly correlated system, that it is possible
keep the exact integrability of theXXZ chain by enlarging
the excluded volume to the spins. Motivated by these res
we introduce in this paper a generalization of the sim
exclusion model where each particle, individually instead
having size 1, in units of lattice spacing, may have an a
trary and distinct integer size (si50,1,2, . . . ). Particles with
size si.1 will produce a stronger excluded volume tha
those in the simple exclusion model where all the partic
have unity size (s15s25•••5sn51). Particles with size
zero (s50) produce no excluded volume since we may p
an arbitrary number of them at the same site. By conside
arbitrary mixtures of molecules with appropriate sizes,
may change continuously the excluded volume in the b
limit. The time-evolution operator for these models are ge
eralizations of the ferromagneticXXZ chain where restric-
tions on spin configurations, which depend on the particu
sizes of the moluculessi , are added. We show that for arb
trary distribution of the molecule’s sizes the eigenspectr
of the related Hamiltonian can be calculated exactly throu
the Bethe ansatz. The exact integrability for the particu
case where all the molecules have the same size and
diffusion is fully asymmetric was also verified recently b
Sasamoto and Wadati@12#.

Following Gwa and Spohn@7# we show, in the anisotropic
limit e250, that for arbitrary distribution of molecules th
real part of the gap behaves as Re(G);N23/2, giving a uni-
versal KPZ behavior with dynamical critical exponentz5 3

2 .
Since in our model the excluded volume can be control
continuously by changing the distribution of molecules, t
above exact results imply that the exclusion volume effec
irrelevant to the KPZ dynamics.

The paper is organized as follows. In the next section
introduce the generalized asymmetric model and the rela
79 ©1999 The American Physical Society
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generalized surface growth model. The Bethe-ansatz solu
of our model is presented in Sec. III and in Sec. IV a n
merical and analytical calculation of the dynamical critic
exponentz is presented. Finally, in Sec. V we give our co
clusions and in the Appendix we relate exactly the gene
asymmetric exclusion model with several boundary con
tions with the simple exclusion model, in different lattic
sizes.

II. THE GENERALIZED ASYMMETRIC
EXCLUSION MODEL

The simplest realization of the model we consider
this paper is the asymmetric diffusion of molecules~or par-
ticles! on a lattice of sizeN, where each molecule’s
i ( i 51,2, . . . ,n) may have a distinct sizesi50,1,2, . . . , in
units of lattice spacing. We represent the molecules on
lattice by placing their center of mass at the lattice sites
Fig. 1 we show some examples of configurations ofn55
molecules with the size’s distribution$s% in a lattice withN
56 sites. Molecules of sizes50 are special since in a give
lattice point we can put an arbitrary number of them. As
can see from Fig. 1, the minimum distance between
particles with sizes,s8 on the lattice is given by

ds,s85IntS s1s811

2 D , s,s850,1,2, . . . , ~2!

where Int(x) is the integer part ofx. In order to describe the
occupancy of a given sitei ( i 51,2, . . . ,N), we attach on it
a site variableb i taking integer values (b iPZ). If b i50, the
site is empty; on the other hand ifb i.0, we have a molecule
of sizes5b i and if b i52n,0 we haven molecules of size
0. The allowed configurations$b i%5$b1 ,b2 , . . . ,bN% are
those satisfying the constraints imposed by the sizes of m
ecules in a periodic lattice, i.e., ifb iÞ0 andb jÞ0 we must
have u i 2 j u>ds(b i ),s(b j )

, wheres(b)50 if b<0 ands(b)

5b if b.0 is the excluded volume~or size! associated tob.
The master equation for the probability distributio

P($b%,t) can be written in general as

FIG. 1. Example of configurations of molecules with distin
sizes in the asymmetric diffusion problem. These examples co
spond ton55 particles in a lattice with sizeN56. The sizes
$s1 ,s2 , . . . ,s5% are shown in~a!–~c!.
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]P~$b%,t !

]t
52G~$b%→$b8%!P~$b%,t !1G~$b8%

→$b%!P~$b8%,t !, ~3!

whereG($b%→$b8%) is the transition rate, where a configu
ration$b% changes to$b8%. In the model under consideratio
we only allow, whenever it is possible, a single particle
diffuse into its nearest-neighbor sites. The possible moti
are diffusion to the right,

b i B i 11→B i b i 11 , b.0,
~4!

b i g i 11→~b11! i~g21! i 11 , b,0,g<0,

with transition rateeR , and diffusion to the left,

B i b i 11→b i B i 11 , b.0,
~5!

g i b i 11→~g21! i~b11! i 11b,0, g<0,

with transition rateeL . The master equation~2! can be writ-
ten as a Schro¨dinger equation in Euclidean time~see Ref.
@13# for general application for two-body processes!,

]uP&
]t

52HuP&, ~6!

if we interpret uP&[P($b%,t) as the associated wave fun
tion. If we representb i as ub& i , the vector ub&1^ ub&2
^ •••^ ub&N will give us the associated Hilbert space. Th
process~4! and ~5! gives us the Hamiltonian

H52DP(
i 51

N

~Hi ,i 11
. 1Hi ,i 11

, !P,

Hi , j
. 5 (

b51

`

@e1~Ei
0,bEj

b,02Ei
b,bEj

0,0!

1e2~Ei
b,0Ej

0,b2Ei
0,0Ej

b,b!#, ~7!

Hi , j
, 5 (

b52`

21

(
g52`

0

@e1~Ei
b11,bEj

g21,g2Ei
b,bEj

g,g!

1e2~Ei
g21,gEj

b11,b2Ei
g,gEj

b,b!#,

with

D5eR1eL , e15
eR

eR1eL
, e25

eL

eR1eL
, ~8!

and periodic boundary conditions. The matricesEa,b are
infinite-dimensional with a single nonzero element (Ea,b) i , j
5da,idb, j (a,b,i , j PZ). The projectorP keeps on the Hil-
bert space only the vectorsu$b%& satisfying the constrain
~2!, which mathematically means that for allb i ,b jÞ0, u i
2 j u>ds(b i ),s(b j )

. The constantD in Eq. ~7! fixes the time

scale and for simplicity we choseD51. A particular simpli-
fication of the above Hamiltonian occurs when all the m
ecules have the same fixed sizes.0. In this case the Hamil-
tonian can be expressed in terms of spin-1

2 Pauli matrices,

e-
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H $s15•••5sn5s%52PsS (
i 51

N

@e1s i
2s i 11

1 1e2s i
1s i 11

2

1 1
2 ~e11e2!~s i

zs i 11
z 21!# D Ps , ~9!

where now Ps projects out configurations where two u
spins, in asz basis, are at a distance smaller than the s
s.0. In the case wheres51, the projectorPs51 and we
have the standard asymmetric exclusion Hamiltonian~1!. In
terms of Pauli matrices this operator has the general for

Ps5)
i

F1

2
~12s i

z!1
1

2
~11s i

z!)
l 51

s21 S 12s i 1 l
z

2 D G . ~10!

The Hamiltonian~9! can be more easily compared with sta
dard magnetic quantum chains by performing fore1 ,e2

Þ0 the following canonical change of variables:

s i
6→S e2

e1
D 6 i /2

s i
6 , sz→sz, i 51,2, . . . ,N, ~11!

which gives

H52
1

2
Ae1e2(

i 51

N

Ps@s i
xs i 11

x 1s i
ys i 11

y

1D~s i
zs i 11

z 21!#Ps ,
~12!

D5
e11e2

AeReL

.

Apart from the projectorPs , this is the ferromagneticXXZ
chain or the anisotropic Heisenberg chain. However, in d
tinction with Eq. ~8! the boundary conditions are no
twisted,

sN11
6 5S e1

e2
D 6N/2

s1
6 , sN11

z 5s1
z . ~13!

We expect that ferromagnetic quantum chains like those
Eq. ~12! are gapped forD.1. However, since (e1 /e2)N/2

→`, for N→` the boundary condition gives us interactio
with the same degree of importance as the totality of
other interactions~see@14# for a related problem!. As we will
see, from the exact solution of Eqs.~7! and ~9!, this surface
term is strong enough to produce a gapless eigenspectr

In surface growth physics, the asymmetric simple exc
sion model is related to the single-step model. Similarly,
generalized model is also related to a generalization of
single-step model. The surface configurations in this gro
model are obtained by defining height variableshi ( i
51,2, . . . ), which are related to the spin variables in o
generalized asymmetric diffusion model. For simplicity, w
are going to present only the surface growth model relate
the diffusion problem where all molecules have the sa
sizes. Let us consider initiallys.0. For a given configura-
tion $b1 , . . . ,bN% of molecules of sizes, the height vari-
ables should obey
e

-

in

e

.
-
r
e
h

to
e

hi 112hi5 f ~b i 2s/2 ,b i 2s/211 , . . . ,b i 1s/2 ,b i 1s/211!,
~14!

where f 50 for all allowed configurations except in the ca

f ~0, . . . ,0!521 and f ~s,0, . . . ,0,s!51. ~15!

The variables$b% of the related diffusion model are define
at the links or at the same positions of the height variab
$h% depending on if the size of the moleculess is odd or
even, respectively. The number of moleculesn (0,1, . . . ) in
the generalized asymmetric diffusion is conserved and
each value ofn we are going to have a growth model wit
different boundary conditions in the spacial direction. T
dynamical rules defining the growth are the following.

~a! No steps on the surface are allowed to be higher t
1, in units of lattice spacing in the growth direction, i.e.,

hi 112hi51,0,21 ~ i 51, . . . ,n21!. ~16!

~b! All the local valleys and hills should have a size,
units of the lattice spacing in the spatial direction, which is
multiple of b5s11.

~c! The following boundary condition should be satisfie

hi 1N5hi2h̄, h̄5b$@N/b# I2n%1@N/b#R , ~17!

where by@N/b# I and @N/b#R we mean the integer part an
the rest of the divisionN/b.

~d! The surface changes whenever, by obeying the pr
ous requirements, we can still adsorb (hi 1 l→hi 1 l11,l
50,1, . . . ,b21) or desorb (hi 1 l→hi 1 l21,l 50,1, . . . ,b
21) at heighthi ( i 51, . . . ,N) a retangular brick of sizeb
in the spatial direction and size 1 in the growth direction.

We choose a heighthi( i 51, . . . ,n) at random. If it is
possible to adsorb or desorb a brick, with probabil
e1/2 (e2/2) we desorb~adsorb! a brick, and do nothing
with probability 1

2 . If it is possible, athi , only to desorb
~adsorb! a brick, with probabilitye1 (e2) we desorb~ad-
sorb! a brick and with probability 12e1 (12e2) we do
nothing. In Fig. 2, we show forN57, s52 (b53), and
n52 some examples of the possible configurations of
surface. In this figure we also show the corresponding p
ticle configurations in the diffusion problem. We can veri
that for arbitrarys ~or b), as long as the growth model is no
periodic (NÞnb) there exists an exact one-to-one corr
spondence between the configurations of particles and th
of the surface, with the transitions between them descri
by the Hamiltonian~7!. On the other hand, if the growth
model is periodic (N5nb), there existb configurations in
the asymmetric diffusion problem that correspond to a sin
surface configuration~the flat surface!. Consequently, the
Hamiltonian ~7! does not describe exactly the generaliz
step model in a finite lattice. However, asN increases, this
difference decreases and Eq.~7! also describes the fluctua
tions of the growth model.

Finally, in the case where all the molecules have s
zero, a possible growth model is obtained by defining
height variablehi ( i 51,2, . . . ,N) at the same position o
the molecules in the diffusion problem. For a given config
ration $n1 ,n2 , . . . ,nN% with ni molecules at sitesi, the
height variables in the surface model (hi 11>hi) satisfy
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hi2hi 215ni , i 52, . . . ,N, ~18!

with the boundary condition

hN115h11n, ~19!

where n5(ni is the total number of molecules. Bricks o
unity size are desorbed~adsorbed! with transition rates
e1 (e2) if the final configuration satisfieshi 11>hi
( i 51,2, . . . ,N21).

III. THE BETHE-ANSATZ EQUATIONS

We present in this section the exact solution of the gen
quantum chain~7!. For simplicity, let us consider initially the
case where all the molecules have the same
s (0,1, . . . ). In theparticular case wheres51, we have the
standard simple exclusion model whose Bethe-ansatz s
tion was obtained by Gwa and Spohn@7# and can also be
obtained after the canonical transformation~13! from the
Bethe-ansatz solution of theXXZ chain with twisted bound-
ary conditions@15#. The exact integrability of the fully asym
metric version of Eq.~12! (e250), for s.0, was verified
directly in the master equation by Sasamoto and Wadati@12#,
and the model withs50 is related to the limitq→` of the
q-boson hopping model introduced by Bogoliubovet al.
@16,17#.

Due to the conservation of particles in the diffusion pr
cesses, the total number of particles are good quantum n
bers and we can separate the associated Hilbert space
block-disjoint sectors labeled by the numbern of particles.
We therefore consider the eigenvalue equation

Hun&5Eun&, ~20!

FIG. 2. Examples of configurations in the growth model w
N57, b53, andn52. The corresponding configurations of pa
ticles in the asymmetric diffusion problem@Eq. ~7!# are also shown.
The configurations~b! and ~d! are obtained by adsorbing a bric
~sizeb53) or by moving a particles to the left in configuration~a!,
and configurations~c! and~e! are obtained by desorbing a brick, o
by moving a particle to the right in configuration~a!.
al

e

lu-

-
m-
nto

where

un&5(
$x%

f ~x1 , . . . ,xn!ux1 , . . . ,xn&. ~21!

Here x1 , . . . ,xn denotes the location of particles on th
chain and the summation extends over all sets$x% of the n
nondecreasing integers satisfying

xi 11>xi1s, i 51, . . . ,n21, s<xn2x1<N2s.
~22!

It is important to notice that some of these coordinates m
coincide in the case where the particles have zero size.

n51. For one particle on the chain as a consequence
the translational invariance of Eq.~7!, the eigenfunctions are
the momentum-k eigenfunctions,

u1&5 (
x51

N

f ~x!ux&, f ~x!5eikx, ~23!

where

k5
2p

N
l ; l 50,1, . . . ,N21, ~24!

and energy given by

E5e~k![2~e2eik1e1e2 ik21!. ~25!

n52. For two particles on the lattice the eigenvalue equ
tion ~20! gives us two distinct relations depending on t
relative position of the particles. If the two particles are
positionsx1 andx2 satisfyingx2.x11s, we obtain

E f~x1 ,x2!52e1 f ~x121,x2!2e2 f ~x111,x2!12 f ~x1 ,x2!

2e1 f ~x1 ,x221!2e2 f ~x1 ,x211!, ~26!

which can be solved by the ansatz

f ~x1 ,x2!5eik1x1eik2x2, ~27!

which gives

E5e~k1!1e~k2!. ~28!

Since the relation~28! is symmetric ink1 and k2, we can
write a more general solution of Eq.~26! as

f ~x1 ,x2!5A12e
ik1x1eik2x21A21e

ik2x1eik1x2 ~29!

with the same energy as in Eq.~28!. The second relation
happens whenx25x11s. In this case we have

E f~x1 ,x11s!52e1 f ~x121,x11s!2e2 f ~x1 ,x11s11!

1 f ~x1 ,x11s!. ~30!

If we now substitute the ansatz~29! with the energy~28!, the
constantsA12 andA21, initially arbitrary, should now satisfy

A12

A21
52S eik1

eik2
D s21

eiC12, ~31!
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eiC j l 5
e11e2ei (kj 1kl )2eik j

e11e2ei (kj 1kl )2eikl
. ~32!

The ‘‘wave numbers’’k1 andk2 are complex in general an
are fixed due to the cyclic boundary condition

f ~x2 ,x11N!5 f ~x1 ,x2!, ~33!

which from Eq.~29! give us the equations

A12

A21
5e2 ik2N,

A21

A12
5e2 ik1N. ~34!

Equations~31! and ~32! give us the Bethe-ansatz equatio
for n52,

eik jN52)
l 51

2 S eik j

eikl
D s21

eiC j ,l, j 51,2, ~35!

with energy given by Eq.~28!.
General n. The above calculation can be generalized

arbitrary values ofn. The ansatz for the wave function be
comes

f ~x1 , . . . ,xn!5(
P

AP1 ,P2 , . . . ,Pn
ei (kP1

x11•••1kPn
xn),

~36!

where the sum extends over all permutationsP of 1,2, . . . ,n.
If xi 112xi.s for i 51,2, . . . ,n, it is easy to see that th
eigenvalue equation~20! is satisfied by the ansatz~36! with
energy

E5(
j 51

n

e~kj !. ~37!

If a pair of particles is at positionsxi , xi 11, where xi 11
5xi1s, Eq. ~20! with the ansatz~36! and the relation~37!
give us

AP1, . . . ,Pi ,Pi 11 , . . . ,Pn

AP1 , . . . ,Pi 11 ,Pi , . . . ,Pn

52ei (s21)(kPi
2kPi 11

)eiCPi ,Pi 11.

~38!

Inserting the ansatz~36! in the boundary condition

f ~x2 , . . . ,xn ,x11N!5 f ~x1 , . . . ,xn!, ~39!

we obtain the additional relation

AP1 , . . . ,Pn
5eikP1

NAP2 , . . . ,Pn ,P1
. ~40!

If we iterate the relation~38! n times, Eq.~40! gives us the
Bethe-ansatz equations

eik jN5~2 !n21)
l 51

n S eik j

eikl
D s21

e11e2ei (kj 1kl )2eik j

e11e2ei (kj 1kl )2eikl

~41!

for j 51,2, . . . ,n. The solutions$kj% of these equations with
Eq. ~37! give us the eigenenergies of the Hamiltonian~7!.
Furthermore, it follows from a lattice shifting that the wav
r

functions given by the ansatz~36! are also eigenfunctions o
the momentum operatorP̂ with eigenvalue

p5(
j 51

n

kj mod~2p!5
2p

N
l , l 50,1, . . . ,N21. ~42!

In the particular case wheres51, Eqs.~37!, ~41!, and ~42!
recover the results presented in Ref.@7#.

Let us now consider the general case where we havn
molecules with arbitrary given sizes$s1 ,s2 , . . . ,sn% (si
50,1,2, . . . ) and theHamiltonian given by Eq.~7!. In this
case each type of molecule is conserved separately. M
over, since in the diffusion processes the particles only in
change positions with the vacant sites, a given or
$s1 ,s2 , . . . ,sn% of particles remains conserved up to cyc
permutations. The wave functions can be written as

us1 ,s2 , . . . ,sn&

5(
$c%

(
$x%

f sc1
, . . . ,scn~x1 , . . . ,xn!ux1 , . . . ,xn&. ~43!

Here f sc1
, . . . ,scn(x1 , . . . ,xn) is the amplitude of a configura

tion where particles of sizess1 , . . . ,sn occupy the positions
x1 , . . . ,xn , respectively. The summation$c% extends over
all cyclic permutations$c1 , . . . ,cn% of integers$1, . . . ,n%,
and the summation$x% extends, for a given distribution
$sc1

, . . . ,scn
% of molecules, to increasing integers satisfyin

xi 11>xi1dsci
,sci 11

, i 51, . . . ,n21,

dscn
,sc1

<xn2x1<N2dscn
,sc1

. ~44!

The ansatz that we expect to be valid, which replaces
~29!, is

f s1 , . . . ,sn~x1 , . . . ,xn!5(
P

AP1 , . . . ,Pn

s1 , . . . ,sn ei (kP1
1•••1kPn

),

~45!

whereAkP1
, . . . ,kPn

s1 , . . . ,sn and$k1 , . . . ,kn% are going to be fixed by

imposing that Eq.~44! with Eq. ~45! is a solution of the
eigenvalue equation of the general Hamiltonian~7!.

Let us consider the eigenvectors of Eq.~7! with a differ-
ent number of particles.

n51. For one particle on the chain the ansatz~45! coin-
cides with Eq.~36! and the wave functions and energies a
given by Eqs.~23! and ~25!, respectively.

n52. If both particles are identical,s15s25s, we have
the same situation considered previously in Eqs.~26!–~35!.
The wave functionsus,s& are given by Eq.~45! with energies
given by Eqs.~28! and ~35!. However, if the particles are
distinct, the situation is different. If the particles are locat
at positionsx1 andx2, with x22x1.ds1 ,s2

, the ansatz~45! is
valid with energy given by Eq.~28! and no restrictions on
$AkP1

,kP2

a i ,a j % are necessary. If the particles are at the clos

distancex25x11ds1 ,s2
, Eq. ~30! is replaced by
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E fs1 ,s2~x1 ,x11ds1 ,s2
!52e1 f s1 ,s2~x121,x11ds1 ,s2

!

2e2 f s1 ,s2~x1 ,x11ds1 ,s2
11!

1 f s1 ,s2~x1 ,x11ds1 ,s2
!. ~46!

Inserting in the above equation the ansatz~45! and the en-
ergy ~28!, we obtain the relation

AP1 ,P2

s1 ,s2 52eiCP1 ,P2 (
s18 ,s28

S
s
28 ,s

18

s1 ,s2~kP1
2kP2

!AP2 ,P1

s18 ,s28 , ~47!

whereCP1 ,P2
is given by Eq.~32! and the elements of theS

matrix are given by

Sg,m
a,b~k!5ei (da,b21)kda,mdb,g . ~48!

The wave numbersk1 and k2 are going to be fixed by the
boundary condition

f s2 ,s1~x2 ,x11N!5 f s1 ,s2~x1 ,x2!, ~49!

but instead of deriving the Bethe-ansatz equations forn52
let us consider the case of generaln.

General n. The ansatz~45! applied to the case where tw
particles are at their closest distance gives us the genera
tion of Eq. ~47!,

A . . . ,P1 ,P2 , . . .
. . . ,a,b, . . . 52eiCP1 ,P2 (

a8,b8
Sa8,b8

a,b

3~kP1
2kP2

!A . . . ,P2 ,P1 , . . .
. . . ,b8,a8, . . . , ~50!

with S given by Eq. ~48!. Successive applications of th
equation give us in general different relations between
amplitudes. For example,A . . . ,k1 ,k2 ,k3 , . . .

. . . ,a,b,g, . . . relate to

A . . . ,k3 ,k2 ,k1 , . . .
. . . ,g,b,a, . . . by performing the permutationsabg

→bag→bga→gba or abg→agb→gab→gba, and
consequently theS matrix should satisfy the Yang-Baxte
@18,19# equation

(
g,g8,g9

Sg,g8
a,a8~k12k2!Sb,g9

g,a9~k12k3!Sb8,b9
g8,g9 ~k22k3!

5 (
g,g8,g9

Sg8,g9
a8,a9~k22k3!Sg,b9

a,g9~k12k3!Sb,b8
g,g8 ~k12k2!.

~51!

Actually the relation~51! is a necessary and sufficient co
dition @18,19# to obtain a nontrivial solution for the ampli
tudes in Eq.~50!. The validity of Eq. ~51! can easily be
verified for the diagonalSmatrix ~48! in the problem we are
considering.

The boundary condition

f s1 , . . . ,sn~x1 , . . . ,xn!5 f s2 , . . . ,sn ,s1~x2 , . . . ,xn ,x1!
~52!

implies the relation between the amplitudes

AP1 , . . . ,Pn

s1 , . . . ,sn 5eikP1
NAP2 , . . . ,Pn ,P1

s2 , . . . ,sn ,s1 . ~53!
za-

e

If we now apply relation~50! n times, we can obtain a rela
tion between the amplitudes with the same momenta, i.e

AP1 , . . . ,Pn

s1 , . . . ,sn 5~2 !n21ei(
l 52

n

CPl ,P1eikP1
N

3 (
$s18 , . . . ,sn8%

(
$s19 , . . . ,sn9%

S
s
18 ,s

19

s1 ,s29~kP1

2kP1
!S

s
28 ,s

29

s2 ,s39~kP2
2kP1

!•••S
s
n8 ,s

n9

sn ,s19~kPn

2kP1
!AP1 , . . . ,Pn

s18 , . . . ,sn8 , ~54!

where we introduced the extra sum

15 (
s29 ,s19

ds
29 ,s

18
ds1 ,s

19
5 (

s29 ,s19
S

s
18 ,s

19

s1 ,s29~kP1
2kP1

!. ~55!

In order to fix the values of$kj%, we should then find the
eigenvaluesL(k) of the matrix

^$s%uT~k!u$s8%&5 (
$s19 , . . . ,sn9%

)
l 51

n

S
s
l8 ,s

l9

sl ,sl 119
~kPl

2k!, ~56!

with sn119 5s19 . We identifyT(k) as the transfer matrix of an
inhomogeneous vertex model, with inhomogeneities (kPl

2k), in a periodic lattice. The Boltzmann weights of th
vertex models are given bySgd

ab and the number of distinc
vertices depends on the particular configuration~type of or-
der! of molecules in our diffusive system. Using Eq.~48!, we
can see that there exists only one nonzero element for e
line, i.e., ^s1 , . . . ,snuTus2 , . . . ,sn ,s1&.

In order to calculate the eigenvaluesL(k), we apply the
transfer matrixr times in the stateAs1 , . . . ,sn, wherer is the
minimum number of cyclic rotations of$s1 , . . . ,sn%, where
the configuration repeats the initial one. We may show th

TrAP1 , . . . ,Pn

a1 , . . . ,an5L r~k!AP1 , . . . ,Pn

a1 , . . . ,an. ~57!

Also it is easy to compute

L r~k!5expF i
r

n S (
l 51

n

dsl ,sl 11
21D (

l 51

n

~kl2k!G . ~58!

Finally, substitutingL(kP1
) in Eq. ~54! we obtain the Bethe-

ansatz equations

eik jN5ei
2p
r m~21!n21

3)
l 51

n

ei (kj 2kl )( s̃21)
e11e2ei (kj 1kl )2eik j

e11e2ei (kj 1kl )2eikl
, ~59!

where j 51, . . . ,n; m50,1, . . . ,r 21 and

s̃5
1

n (
l 51

n

dsl ,sl 11
~60!
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plays the role of an average molecule size of the partic
configuration$s% of molecules. As we can see, by compari
Eq. ~59! with Eq. ~41!, the extra phase exp(i2pm/r)(m
50,1, . . . ,r 21) gives r times more solutions of Eq.~59!
than in Eq.~41!. This indeed should be the case since
Hilbert space associated to the Hamiltonian~7! of a given
distribution of particles of sizes$s1 , . . . ,sn%, due to the dis-
tinguishibility of the particles, isr times bigger than that o
the Hamiltonian~7! whens15s25•••5sn . It is interesting
to observe thats̃ can take any non-negative rational numb
by choosing appropriately$s1 , . . . ,sn%. Also many distinct
distributions of the molecules’ sizes with the same effect
s̃ will have the same eigenenergies.

In the Appendix we explore our Bethe-ansatz solution
obtain the relationship between the eigenvalues and ei
vectors of the Hamiltonian~7! with different distributions of
the molecules’ sizes.

IV. THE CRITICAL EXPONENT Z

In this section we calculate the dynamical critical exp
nent z for the stochastic models presented in Sec. II. T
calculation is done by exploiting its connection with th
mass gapGN of the corresponding Hamiltonian,

Re~GN!;N2z. ~61!

A calculation for arbitrary values ofe1 ,e2 and density
n/N can be done systematically by using the method p
sented in@10#. However, since universality arguments ind
cate thatz should be independent of the particular values
e1 ,e2 , andn, as long ase1Þe2 , we are going to restric
ourselves, as in@7#, to the simplest case wheree250,e1

51. A general discussion for the other cases, which does
change our results, is given at the end of the Appendix.
fining the variables

zj52e2 ik j21, ~62!

the energies~37! and momenta~42! are given by

E5(
j 51

n

~12zj !/2, ~63!

e2 iP5)
j 51

n

~11zj !/2, ~64!

respectively. The$zj% variables should satisfy the Bethe
ansatz equations~59!,

~11zj !
N2ns̃~12zj !

n522Ne2 i (2p/r )m)
l 51

n
zl21

~zl11! s̃
,

~65!

where j 51, . . . ,n, m50,1, . . . ,r 21. It is interesting to
note that these equations are simpler than the usual Be
ansatz equations appearing in other exact integrable sys
since the right-hand side of Eq.~65! is independent of the
r

e

r

e
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-
s
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f

ot
e-
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ms

particular value ofj. These equations are even simpler for th
special ‘‘half-filled’’ densityr5n/N51/(11 s̃), i.e.,

~12z2!n5Y,
~66!

Y522n(11 s̃))
l 51

n
zl21

~zl11! s̃
.

If we parametrize Y52aneinu, with a>0 and uP
(2p/n,p/n), the 2n rootszj are given by

zj5~12yj !
1/2, zj 1n52zj ;

~67!
yj5aeiuei2p( j 21/2)/n; j 51, . . . ,n.

For a given choice$zj% of the above set and a given value o
m (0,1, . . . ,r 21), we have only two unknowns,a and u,
which are obtained from the equation

~aeiu!n5ei (2p/r )m2( s̃11)n)
l 51

n
zl ( j )21

@zl ( j )11# s̃
. ~68!

We have solved numerically the above equations for seve
values ofs̃, m, r, and n. The ground-state energyE50 is
obtained by choosingm50 in Eq. ~68!, and is given by the
configuration

C05$z1 ,z2 , . . . ,zn%, ~69!

with a5u50. In order to find the first excited state, we
should consider different choices of$zj% and different values
of m. Sincezj1zn1 j50, the energy increases as we take,
the configurations$zj%, values ofzj wheren, j <2n. There-
fore, configurations$z% associated with low energies are

C15$z1 ,z2 , . . . ,zn21 ,zn11% ~70!

and

C215$z2 , . . . ,zn21 ,zn ,z2n%. ~71!

These configurations, from Eq.~64!, correspond to states
with momentum22p/N and 2p/N, respectively. Our nu-
merical results show that the energy corresponding to
configurationC0 with mÞ0 behaves for largeN as

EC0 ,m;
a

n1/2
2 i

p

r ~ s̃11!
m, m51,2, . . . . ~72!

On the other hand, the configurationC1 or C21, for suffi-
ciently large values ofN, produces the lowest energy whe
m50, independently ofs̃,r , and behaves as

EC61,0;
a0

nz
1 i

b0

ng
, z5

3

2
, g51, ~73!

where a0 and b0 are constants. The energies for differen
values ofm but with configurationsC61 also behave simi-
larly to Eq. ~73!. Comparing Eq.~73! with Eq. ~72!, we see
that the gap is given byEC61,0 and is real only for the special
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TABLE I. Examples of finite-size estimates for the amplitudesa0 , b0 and the exponentsz andg in Eq. ~73!. These estimates correspon

to the casess̃50.25 ands̃52.5. The calculated analytical results in then→` are also shown in the last line of this table.

s̃50.25 s̃52.5

n a0 b0 z g a0 b0 z g

10 2.522601 20.916488 1.586388 0.934332 2.495387 0.654527 1.576255 0.9341
50 2.351517 20.941304 1.521414 0.997428 2.345566 0.672351 1.518526 0.9974
100 2.326504 20.942187 1.510838 0.999374 2.323540 0.672989 1.509564 0.9993
150 2.318133 20.942349 1.507253 0.999724 2.316160 0.673106 1.506402 0.9997
200 2.313942 20.942406 1.505450 0.999846 2.312463 0.673146 1.504811 0.9998
250 2.311425 20.942432 1.504365 0.999902 2.310243 0.673165 1.503853 0.9999
300 2.309747 20.942446 1.503640 0.999932 2.308737 0.673175 1.503189 0.9999
400 2.307648 20.942460 1.502733 0.999962
500 2.306388 20.942466 1.502186 0.999976
800 2.304498 20.942473 1.501364 0.999988
Exact 2.301346 20.942478 1.5 1 2.301346 0.673198 1.5 1
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cases̃51, treated in@7#. The values ofa and u that corre-
spond to the first excited state behave asymptotically as

a511
b

n
1o~n21!, u56a

~ s̃21!

n3/2
1o~n23/2!,

~74!

whereb and a are constants. In order to illustrate our n
merical results, we show in Table I the finite-size estima
for the amplitudesa0 ,b0 and the exponentsz andg defined
in Eq. ~73!.

Accepting the behavior~74! for the values ofa andu for
the first excited state, we also used the same procedure
Gwa and Spohn@7# in order to show analytically thatz

5 3
2 , a052.301 345 96 . . . , independently of the value ofs̃

and b05p( s̃21)/@2(s̃11)#. In the last line of Table I we
show the exact results obtained analytically.

These results indicate that all these models with an a
trary mixture of molecules of different sizes, as well as t
corresponding generalized growth models, exhibit a univ
sal behavior with a KPZ-type of dynamical behavior. In t
Appendix we show that for general values ofe1 , e2 , andn,
the wave functions of Eq.~7! for arbitrary distributions of the
molecules’ sizes are exactly related. This implies that con
tional probabilities and correlation functions for arbitra
distribution $s% are exactly related to the simple exclusio
problem$s15s25•••sn51%. The eigenvalues of these mod
els are exactly related in the case of free boundaries. In
case in which we have a periodic lattice, the eigenvalue
H $s% are exactly related to the asymmetricXXZ chain with
twisted boundary conditionf proportional to the momentum
of the first excited state. Since the momentum of this stat
P52p/N, the effect of the twisted angle should not affe
the leading order in the mass gap calculations. This imp
that for arbitrary values ofe1 , e2 , and densityn, the
leading-order results of the real part of the gap are the s
as those calculated systematically in@10#.
s
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V. CONCLUDING REMARKS

We have solved exactly a general asymmetric diffus
problem where the particles may have distinct and arbitr
integer sizes. We also show in Sec. II that these diffus
models are related to generalized growth models. Si
through diffusion the particles do not interchange position
given order$s1 , . . . ,sn% of the distribution of the molecules
sizes on the lattice is fixed, up to cyclic permutations.
parameter which is proportional to the excluded volume
the particles is the average size of the moleculess̃ given by
Eq. ~60!. In the case of the simple exclusion problem, all t
molecules have the same unity sizes15s25•••5sn51,
which givess̃51. On the other hand, if all the particles hav
no size, we haves̃50 and there is no excluded volume. B
choosing a suitable distribution$s% of the molecules’ sizes
we may changes̃ almost continuously in the bulk limitN
→`. Exploiting the connection between the dynamical cr
cal exponentz and the mass gap of the related quantu
chain, we obtainedz5 3

2 for all the models, independently o
the parameters̃ measuring the excluded volume. This im
plies that, at least in one dimension, the excluded volu
effect is irrelevant for dynamical systems in the KPZ unive
sality class.

We also show~see the Appendix! that the wave functions
of the models with an arbitrary distribution of the molecule
sizes can be related to those of a simple asymmetric ex
sion problem, in a distinct lattice size. This implies that co
ditional probabilities and correlation functions of these mo
els are exactly related.
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APPENDIX A: EXACT SPECTRAL RELATIONS
BETWEEN THE MODELS

WITH DISTINCT MOLECULE DISTRIBUTION

In this appendix we are going to show how the eigenv
ues and eigenvectors of the general Hamiltonian~7! with a
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different distribution of molecules are related to those of
simple asymmetric exclusion Hamiltonian~1!. Let us con-
sider initially the case of free boundary conditions. In th
case we have to specify, for a given lattice sizeN, the occu-
pation at the border of the lattice, i.e., the minimalxI and
maximumxF coordinates in which we may put a molecule
size s. As an extension of Eq.~2! we define these coordi
nates, for the model with a distribution$s1 ,s2 , . . . ,sn% of
molecules, as

xI5ds1,01ds1,05Int@~s111!/2#1ds1,0 ,

~A1!
xF5N2~dsn,021!2dsn,0 .

If ux1 , . . . ,xn& are the vectors corresponding to the coor
nates of the particles of sizes$s1 , . . . ,sn%, the application of
the Hamiltonian~7! with free ends in a given vector can b
written as

H $s%
F ux1 , . . . ,xn&52 (

i 51

n21

e1u~xi 112xi2dsi ,si 11
!

3@ ux1 , . . . ,xi 21 ,xi11,xi 11 , . . . ,xn&

2ux1 , . . . ,xn&] 2(
i 52

n

e2u~xi2xi 21

2dsi 21 ,si
!@ ux1 , . . . ,xi 21 ,xi

21,xi 11 , . . . ,xn&2ux1 , . . . ,xn&]

2e1u~xF2xn!@ ux1 , . . . ,xn21 ,xn11&

2ux1 , . . . ,xn&] 2e2u~x12xI !

3@ ux121,x2 , . . . ,xn&2ux1 , . . . ,xn&],

~A2!

whereu(x)50 for x<0 andu(x)51 for x.0 is the stan-
dard step function.

If we now make the change of coordinates

xi85xi2xI2(
j 51

i 21

dsj ,sj 11
1 i , ~A3!

we can rewrite Eq.~A1! as

H $s%
F ux18 , . . . ,xn8&52 (

i 51

n21

e1u~xi 118 2xi821!

3@ ux18 , . . . ,xi 218 ,xi811, . . . ,xn8&

2ux18 , . . . ,xn8&] 2(
i 52

n

e2u~xi82xi 218 21!

3@ ux18 , . . . ,xi 218 ,xi821,xi 118 , . . . ,xn8&

2ux18 , . . . ,xn8&] 2e1u~xF82xn8!

3@ ux18 , . . . ,xn218 ,xn811&2ux18 , . . . ,xn8&]

2e2u~x182xI8!@ ux1821,x28 , . . . ,xn8&

2ux18 , . . . ,xn8&], ~A4!
e

-

where nowxI851 and xF85xF2xI2( j 51
n21dsj ,sj 11

1n[N8.
But this is exactly the application of the simple asymmet
exclusion HamiltonianH $s15•••5sn51%

F in a lattice sizeN8.

Consequently, for free ends there exists a one-to-one co
spondence between the eigenvalues and eigenvectors o
general Hamiltonian~7! with an arbitrary distribution of par-
ticle sizes with that of the standard simple diffusion proble
in a lattice size which depends on the volume excluded
to the molecules’ sizes, i.e.,

H $s%
F ~n,N!5H $s15s25•••5sn51%

F ~n,N8!, ~A5!

N85N2 (
j 51

n21

dsj ,sj 11
2ds1,02dsn,01n112ds1,02dsn,0 .

~A6!

The Bethe-ansatz solution of theXXZ chain with surface
fields given in@20#, after the canonical transformation~11!,
can be easily exported for our general model~7! with free
ends. As observed in@21#, the simple asymmetric diffusion
Hamiltonian ~1!, with free boundaries, has a quantu
UqSU(2) symmetry withq5Ae1 /e2. This symmetry im-
plies an exact form for the ground-state wave function. U
ing this wave function in the relation~A3! we obtain the
ground-state wave function for the general Hamiltonian~7!
with free ends,

C0
$s%5(

$x%
)
i 51

n S e1

e2
D xi1 i 2( j 51

i 21 dsj ,sj 11

ux1 ,x2 , . . . ,xn&.

~A7!

Let us now consider the case of the Hamiltonian~7! with
twisted boundary conditions specified by the anglef, which
in general is a complex number,

EN11
b,0 5eifE1

b,0, EN11
0,b 5e2 ifE1

0,b ,
~A8!

bÞ0En11
0,0 5E1

0,0, EN11
b,b 5E1

b,b .

The periodic case treated in Sec. III corresponds to the c
wheref50. The Bethe-ansatz equations for these bound
conditions can be obtained by changing Eqs.~52! and ~53!,
and are given by

eik jN8ei f̃m5~21!n21)
l 51

n
e11e2ei (kj 1kl )2eik j

e11e2ei (kj 1kl )2eikl
, ~A9!

where

N85N2n~ s̃21!, f̃m5f1P~ s̃21!1
2p

r
m,

m50,1, . . . ,r 21, ~A10!

P5(
j

kj mod~2p!5
2p

N
l , l 50,1, . . . ,N21

~A11!

is the momentum andr ,s̃ are defined in Eqs.~57!–~60!.
These equations give us the following equivalence betw
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the eigenspectra of the general Hamiltonian~7! with bound-
ary conditionf, in the eigensector withn particles and a
given momentaP:

H $s1 , . . . ,sn%
f ~N,P,n!5 (

m50

r 21

H $s15s25•••5sn51%
f̃m ~N8,P,n!,

~A12!

where in the right-hand side we have the eigenspectra of
asymmetric simple exclusion Hamiltonian~1! with twisted
boundary conditionf̃m . In the right-hand side of the abov
equation we must also add several eigenspectra, depen
on the value ofr ~see Sec. III!, and this is due to the distin
guishibility of the particles in the Hamiltonian on the lef
hand side of the equation.

Our Bethe solutions presented in Sec. III also give u
connection between the wave functions of the models.
eigenstates related by Eq.~A12!, apart from an overall nor-
malization, satisfy

C$s1 , . . . ,sn%
$k1 , . . . ,kn%

~x1 ,x2 , . . . ,xn!

5C$s15s25•••5sn51%
$k1 , . . . ,kn%

~x18 ,x28 , . . . ,xn8!, ~A13!

where

x185x1 , xi85xi1 i 212(
j 51

i 21

dsj ,sj 11
, i 52, . . . ,n.

~A14!

The results~A5!, ~A13!, and ~A14! imply that any calcula-
tion involving only wave functions can be straigthforward
translated for arbitrary distribution$s% of the molecules’
sizes. An example of this is then-particle Green’s function
B

t

ys

d

he

ing

a
e

P$s%(x1 , . . . ,xn ;tuy1 , . . . ,yn ;0), which gives the probabil-
ity of finding particles of sizesi , initially ( t50) atyi and at
time t at xi ( i 51, . . . ,n). These Green’s functions for th
different models satisfy

P$s1 , . . . ,sn%~x1 , . . . ,xn ;t,y1 , . . . ,yn ;0!

5P$s1 ,5•••5sn51%~x18 , . . . ,xn8 ;t,y18 , . . . ,yn8 ;0!,

~A15!

wherexi8 andyi8 are related toxi andyi as in Eq.~A3!. The
above result generalizes that obtained by Sasamoto and
dati @12# for the case in which we have a fully asymmetr
model (e250) and molecules of identical sizess15s2
5•••5sn5s.

Calculation involving eigenvalues, like the calculation
the exponentz we did in Sec. IV for the fully asymmetric
model (e250), should be translated with care among t
different models. The Bethe-ansatz equations~A9! tell us
that the eigenvalues of our general model~7! in a periodic
lattice of sizeN(f50) are the same as those of the simp
exclusion Hamiltonian~1! in a lattice of sizeN85N2n( s̃
21) and twisted boundary conditionf̃m5P( s̃21)
1(2p/r )m, m50,1, . . . ,r 21. However, the eigenvalue
of the simple asymmetric exclusion Hamiltonian~1! depend
on the boundary condition. Our results of Sec. III, althou
valid only for e250, indicate that the effect of the bounda
angle in the finite-size corrections is of higher order than
leading corrections for the first excited state, since in t
casef̃m5f̃052p( s̃21)/N. This implies that for an arbi-
trary distribution of molecules and arbitrary values ofe1 ,e2

and densities we can use the results obtained in@10#, for the
leading order of the real part of the mass gap, which give
universal dynamical critical exponentz5 3

2 of KPZ-type.
n.

s.

.
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