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Exact solution of the asymmetric exclusion model with particles of arbitrary size
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A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture
of molecules with distinct sizes=0,1,2 . . ., inunits of lattice space, diffuses asymmetrically on the lattice.
A related surface growth model is also presented. Variations of the distribution of the molecules sizes may
change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and
the dynamical critical exponenmtis calculated from the finite-size corrections of the mass gap of the related
guantum chain. Our results show that for an arbitrary distribution of molecules, the dynamical critical behavior
is on the Kardar-Parizi-Zhang universaliff51063-651X%99)01607-4

PACS numbes): 02.50.Ey, 05.70.Ln, 64.60.Ht

I. INTRODUCTION This connection enabled Gwa and Spdfifto explore the
Bethe-ansatz solution of Eql) and calculate exactly the
The asymmetric simple exclusion modgl] is a one- exponentz=2 in the highly anisotropic limite_=0. Subse-
dimensional stochastic model that describes the time fluctuaguently, Kim[10] extended this result fog_>0.
tions of particles diffusing asymmetrically on the lattice. If  In a previous papdrl1] we observed, in connection with
we interpret an occupied site a§=+ 1 and a vacant site as a model for a strongly correlated system, that it is possible to
o{=—1, the time evolution of the probability distribution of keep the exact integrability of th&XZ chain by enlarging

particles is given by the following asymmetnicXZ Hamil-  the excluded volume to the spins. Motivated by these results
tonian; we introduce in this paper a generalization of the simple
exclusion model where each patrticle, individually instead of
N having size 1, in units of lattice spacing, may have an arbi-
- - trary and distinct integer sizes(=0,1,2 . . .). Particles with
H:_Z e 0'j++1+6_0'j+0'j+1+%(1—0']-ZO'J-Z+1)], y 9 =012 ). Particles

size s;>1 will produce a stronger excluded volume than
(1) those in the simple exclusion model where all the particles
have unity size §;,=s,=---=s,=1). Particles with size
zero (s=0) produce no excluded volume since we may put

where N is the number of lattice sites and; =(c* n arbitrary number of them at th me site. By considerin
+igY)/2 are the raising and lowering Pauli operators. peri 2N arbitrary nUmber of them at the same site. by considening

odic boundary conditions are imposed and ande_ (e arbitrary mixtures of molecules with appropriate sizes, we
- y " POS! - "~ _M* . may change continuously the excluded volume in the bulk
+ E*_l.) are the transition probab|[|t|es for having amotion limit. The time-evolution operator for these models are gen-
to the right and to the left, respectively. The physical prop- I'I i f the f 26X Z chain wh tric-
ets of this norHermian cuantur chin a5 well as (2122107 of e feromagneleXZ chan et et
related asymmetric six-vertex model are still under extensive. P g k P P

investigationg 2—4]. This model also describes the surface>'#€S O.f the "?0'“0“'83 ; are addc?d. We show t.hat for arbi-
ﬁrary distribution of the molecule’s sizes the eigenspectrum

fluctuations in a growth model known as a single-step mode L
[5,6] where @7+ o7, ,)/2= —1,0,1 is the height difference of the related Hamiltonian can be calculated exactly through

bet t-neiahb : located at the odd-hal e Bethe ansatz. The exact integrability for the particular
petween nearest-neignbor steps localed at the 0dd-Nail,se \where all the molecules have the same size and the
integer sitesi(—1/2)(i=1,2, ...). Themaster equation de-

fining the Hamiltonian(1) can also be interpretdd] as the csilgfs;ggtésaf#cljlyv\?;gglmz]etr|c was also verified recently by
discretized.\(ersion of the ”°‘?y Burges equation or the Following Gwa and Spohfv] we show, in the anisotropic

Kardar-Parisi-ZhandKPZ) equation[8] governing the mo- limit e_=0, that for arbitrary distribution of molecules the
tion of the height of growing surfaces whose local growth

' : real part of the gap behaves as B¢ N~%72 giving a uni-
velocity depends nonl . - : : : -
. y dep |_nearly on 'ghe local shape. The CONNEGersal KPZ behavior with dynamical critical exponemt 3.
tion between the scaling behavior of the structure functio

[6,9] of the stochastic model and the finite-size dependenébmc.e in our model the_ exclude_d yolume can be controlled
of’the real part of the mass gapy, gives us the dynamical Sontlnuously by cha_nglng the dlstrlbutlor_l of molecules, th_e
critical exponent fabove exact results imply that the exclusion volume effect is
' irrelevant to the KPZ dynamics.
The paper is organized as follows. In the next section we
Re(Gy)~N"2% introduce the generalized asymmetric model and the related

=1
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{s}={0,002,1}
wherel'({B8}—{B’'}) is the transition rate, where a configu-
® ration{B} changes t¢B'}. In the model under consideration
b) ® -_ ® we only allow, whenever it is possible, a single particle to
{s} = {0.0.13,0} diffuse into its nearest-neighbor sites. The possible motions
are diffusion to the right,

o
o IENIEE « Bi Div1—=Di Bir, B>0,

(4)
{s3=11.10.0.2} Bi vi+1—=(B+1)i(y=Di+1, B<0,y=<0,
FIG. 1. Example of configurations of molecules with distinct \yith transition rateeg, and diffusion to the left,
sizes in the asymmetric diffusion problem. These examples corre-
spond ton=5 particles in a lattice with siz&d=6. The sizes i Bii1—Bi Tir1, B>0,
{$1,S7, . . . S5} are shown in@—(c). (5)

Yi Bir1—(y—1)i(B+1);+18<0, »=O0,
generalized surface growth model. The Bethe-ansatz solution
of our model is presented in Sec. Il and in Sec. IV a nu-With transition ratee_ . The master equatiof2) can be writ-
merical and analytical calculation of the dynamical criticalten as a Schiiinger equation in Euclidean tim@ee Ref.
exponentz is presented. Finally, in Sec. V we give our con- [13] for general application for two-body proceskes
clusions and in the Appendix we relate exactly the general

asymmetric exclusion model with several boundary condi- d|P) _

: . . . + D . ——=—H|P), (6)
tions with the simple exclusion model, in different lattice at

sizes.

if we interpret| P)=P({B},t) as the associated wave func-
tion. If we representB; as |B);, the vector|B8),®|8),

Il. THE GENERALIZED ASYMMETRIC ®---®|B)n Will give us the associated Hilbert space. The
EXCLUSION MODEL procesq4) and(5) gives us the Hamiltonian
The simplest realization of the model we consider in N
this paper is the asymmetric diffusion of molecules par- H=-DPY, (H i, ;+H . 1)P,
ticles on a lattice of sizeN, where each molecule’s =1 o

i (i=1,2,...n) may have a distinct sizg=0,1,2 ..., in

units of lattice spacing. We represent the molecules on the - ” 0 0 0

lattice by placing their center of mass at the lattice sites. In Hi = 21 [e.(EPPEPO—ELPEDD)

Fig. 1 we show some examples of configurationsnef5 =

molecules with the size’s distributiofs} in a lattice withN + Ef(EiﬁvOEJQﬂ_ EiO'OEJﬁ'ﬂ)], (7)
=6 sites. Molecules of size=0 are special since in a given

lattice point we can put an arbitrary number of them. As we -1 0

can see from Fig. 1, the minimum distance between two — H5 = X > [e.(EFTME) 17—EPPEY?)
particles with sizes,s’ on the lattice is given by B=—w y=-e
+e_(E) VEPTHP-EPEPA),

s+s’'+1
ds s =Int| ———

7 S!S’:01112 R | (2) With

€R €L

®

D=erte, e€.= , €_= ,
R L + €R+EL €R+EL

where Intk) is the integer part ok. In order to describe the
occupancy of a given site (i=1,2, ... N), we attach on it
a site variableg; taking integer valuesf; € Z). If 8;=0,the and periodic boundary conditions. The matride&” are
site is empty; on the other handgf>0, we have a molecule infinite-dimensional with a single nonzero eIemeEl“(ﬁ)i,j
of sizes=g; and if 8;= —n<0 we haven molecules of size =4, ;64 ;(a,B,i,j € Z). The projectorP keeps on the Hil-
0. The allowed configuration§g;}={81,82, - ...Bn} are bert space only the vectot$g}) satisfying the constraint
those satisfying the constraints imposed by the sizes of mok2), which mathematically means that for g4 ,3;+0, li
ecules in a periodic lattice, i.e., ##0 andg;#0 we must  —]j |>ds(,ei),s(;aj)- The constanD in Eq. (7) fixes the time
have|i —j|=dsg,),s(p) » Wheres(8)=0 if B<0 ands(B)  scale and for simplicity we chog2=1. A particular simpli-
=B if B>0 is the excluded volumer size associated t@.  fication of the above Hamiltonian occurs when all the mol-
The master equation for the probability distribution ecules have the same fixed size0. In this case the Hamil-
P({B},t) can be written in general as tonian can be expressed in terms of spifauli matrices,
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N . L hiv1=hi=Ff(Bi—s2.Bi-sz+1: - - - Biss2 Bivsiz1),
H{51:-~-:sn:s}:_Ps 21 [er0i o te oy 0y, (14
wheref=0 for all allowed configurations except in the case
+%(E++E—)("iz"iz+1_1)]> Ps: O f0,...,0=—1 and f(s0,...,08)=1. (15

spins, in ac? basis, are at a distance smaller than the sizét the links or at the same positions of the height variables
s>0. In the case where=1, the projectolP,=1 and we ihy depending on if the size of the moleculsss odd or
have the standard asymmetric exclusion Hamiltorflgnin ~ €ven, respectively. The number of molecufef0,1, .. .) in

terms of Pauli matrices this operator has the general form the generalized asymmetric diffusion is conserved and for
each value oh we are going to have a growth model with

1 1 s—1 1- 07, different boundary conditions in the spacial direction. The
E(l_ffiz)+§(1+ oA ] ( 5 H (100  dynamical rules defining the growth are the following.

=1 (a) No steps on the surface are allowed to be higher than
1, in units of lattice spacing in the growth direction, i.e.,

P=11

The Hamiltonian(9) can be more easily compared with stan-
dard magnetic quantum chains by performing for,e_ h,;—h=10-1 (i=1,...n-1). (16)
#0 the following canonical change of variables:

(b) All the local valleys and hills should have a size, in

Lo (e . units of the lattice spacing in the spatial direction, which is a
+ + z z — !
7 H(Z) oi, otmot 1=12,. N (D) multiple of b=s+1.
(c) The following boundary condition should be satisfied:
which gives o
) " hien=hi—h, h=b{[N/b],—n}+[N/blz, (17
H=-5Ve: e > Plotal +alal,, where by[N/b], and[N/b]g we mean the integer part and
=t the rest of the divisiomN/b.

+A(o?0?,,—1)]Ps, (d) The surface changes whenever, by obeying the previ-

(12 Ous requirements, we can still adsorb; ((—h;,,+1]
=0,1,...p—1) or desorb K, —h,,—1]1=0,1,...b

A= €+te ] —1) at heighth; (i=1,... N) a retangular brick of sizé
VEREL in the spatial direction and size 1 in the growth direction.

We choose a height(i=1,...n) at random. If it is

Apart from the projectoPg, this is the ferromagneti&®XZ  possible to adsorb or desorb a brick, with probability
chain or the anisotropic Heisenberg chain. However, in dise,/2 (e_/2) we desorb(adsorb a brick, and do nothing
tinction with Eq. (8) the boundary conditions are now with probability 3. If it is possible, ath;, only to desorb
twisted, (adsorh a brick, with probabilitye, (e_) we desorb(ad-
sorbh a brick and with probability + e, (1—€_) we do
nothing. In Fig. 2, we show foN=7, s=2 (b=3), and
n=2 some examples of the possible configurations of the
surface. In this figure we also show the corresponding par-
We expect that ferromagnetic quantum chains like those itticle configurations in the diffusion problem. We can verify
Eq. (12) are gapped foA>1. However, sinced, /e_)">  that for arbitrarys (or b), as long as the growth model is not
—oo, for N—o the boundary condition gives us interaction periodic (N#nb) there exists an exact one-to-one corre-
with the same degree of importance as the totality of thespondence between the configurations of particles and those
other interactiongsee| 14] for a related problem As we will  of the surface, with the transitions between them described
see, from the exact solution of EqS) and(9), this surface by the Hamiltonian(7). On the other hand, if the growth
term is strong enough to produce a gapless eigenspectrummodel is periodic N=nb), there existb configurations in

In surface growth physics, the asymmetric simple excluthe asymmetric diffusion problem that correspond to a single
sion model is related to the single-step model. Similarly, oursurface configuratiorithe flat surface Consequently, the
generalized model is also related to a generalization of thélamiltonian (7) does not describe exactly the generalized
single-step model. The surface configurations in this growtlstep model in a finite lattice. However, dkincreases, this
model are obtained by defining height variablbs (i difference decreases and Hd) also describes the fluctua-
=1,2,...),which are related to the spin variables in ourtions of the growth model.
generalized asymmetric diffusion model. For simplicity, we  Finally, in the case where all the molecules have size
are going to present only the surface growth model related taero, a possible growth model is obtained by defining the
the diffusion problem where all molecules have the saméieight variableh; (i=1,2,... N) at the same position of
sizes. Let us consider initiallys>0. For a given configura- the molecules in the diffusion problem. For a given configu-
tion {B4, ....Bn} Of molecules of sizes, the height vari- ration {n{,n,, ... ,ny} with n; molecules at sites, the
ables should obey height variables in the surface modéi, (;=h,) satisfy

£N/2
+ + z .z
) 01, ONp1=07- (13

+
ON+17 6
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by, h2 , hy . hy, hs| hg by by where

|n)=% f(Xq, - oo Xp)|[Xas o v v Xp)e (21)

Here x4, ... X, denotes the location of particles on the
chain and the summation extends over all g&}sof the n
nondecreasing integers satisfying

Xiy1=X+s, i=1,...n—1, ss=x,—X;=N-s.
(22)

It is important to notice that some of these coordinates may

coincide in the case where the particles have zero size.
n=1. For one particle on the chain as a consequence of

‘ ‘ ‘ ‘ : ! the translational invariance of E(¥), the eigenfunctions are

o i N — the momentunk eigenfunctions,

N
11)=2 %), foo=e, (23)

FIG. 2. Examples of configurations in the growth model with x=1
N=7, b=3, andn=2. The corresponding configurations of par-
ticles in the asymmetric diffusion problef&q. (7)] are also shown.
The configurationgb) and (d) are obtained by adsorbing a brick o
(sizeb=3) or by moving a particles to the left in configuratica), k=—1I: 1=0,1,...N—1, (24)
and configurationgc) and(e) are obtained by desorbing a brick, or N
by moving a patrticle to the right in configuratida).

where

and energy given by

hi—hi—i=ni, i=2,... N, (18) E=e(k)=—(e_e*+e, e k-1). (25
with the boundary condition n=2. For two particles on the lattice the eigenvalue equa-
tion (20) gives us two distinct relations depending on the
hyy1=hi+n, (19 relative position of the particles. If the two particles are at

positionsx; andx, satisfyingx,>x;+s, we obtain
wheren=2Xn; is the total number of molecules. Bricks of
unity size are desorbedadsorbeyl with transition rates Ef(X1,X2)=— € f(xg—1x5) — € f(X;+1xp) +2f(x1,%7)
€ (e_) if the final configuration satisfiesh;,;=h; — e f(X,Xo— 1) —€_F(Xq, X+ 1), (26)
(i=1,2,...N-1).

which can be solved by the ansatz

IIl. THE BETHE-ANSATZ EQUATIONS ) ;
Q (X0, %) = ekragiare (27)

We present in this section the exact solution of the general
quantum chairt7). For simplicity, let us consider initially the which gives
case where all the molecules have the same size
s (0,1,...). In theparticular case wherg=1, we have the E=e(k) +e(ky). (28)
standard simple exclusion model whose Bethe-ansatz sol
tion was obtained by Gwa and Spohr] and can also be
obtained after the canonical transformatiti) from the
Bethe-ansatz solution of theéXZ chain with twisted bound-
ary conditiong 15]. The exact integrability of the fully asym-
metric version of Eq(12) (e-=0), for s>0, was verified  yjth the same energy as in E8). The second relation

directly in the master equation by Sasamoto and Waddli  happens whem,=x,+s. In this case we have
and the model witlts=0 is related to the limig— oo of the

Since the relatior(28) is symmetric ink; andk,, we can
write a more general solution of E(R6) as

f(Xl |X2) :Alzelklxlelkz)(2+AZlelkleelleZ (29)

g-boson hopping model introduced by Bogoliubet al Ef(xy,X;+S)=—€,f(X;—1X;+S)—e_f(Xy,X;+5+1)
[16,17.
Due to the conservation of particles in the diffusion pro- (X1, X1 +5). (30)

cesses, the total number of particles are good quantum num-

bers and we can separate the associated Hilbert space irfgV€ Now substitute the ansag29) with the energy(28), the
block-disjoint sectors labeled by the numbreof particles. ~ cOnstantshy; andAy,, initially arbitrary, should now satisfy

We therefore consider the eigenvalue equation A
12_ (

Hlny=E|n), (20) Ay

gk1| 57t
T) ez (31
e 2
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_ e +e etk gk functions given by the ansat36) are also eigenfunctions of
evi= PATCET TR (32)  the momentum operatd? with eigenvalue
6+ €_ -

The “wave numbers’k; andk, are complex in general and

are fixed due to the cyclic boundary condition

" 2
p=2> ki mod2m) =1, 1=01,...N-1. (42
=1

(X2 X1+ N) =1(x1.%2), (33 In the particular case whee=1, Egs.(37), (41), and (42
which from Eq.(29) give us the equations recover the results presented in Réf.
Let us now consider the general case where we have
A _aon A in molecules with arbitrary given sizefs;,s,, ... Sy} (Si
Ay C 0 A, (349  =0,1,2...) and theHamiltonian given by Eq(7). In this
case each type of molecule is conserved separately. More-
Equations(31) and (32) give us the Bethe-ansatz equationsover, since in the diffusion processes the particles only inter-
forn=2, change positions with the vacant sites, a given order
{s1,S5, . .. ,Sn} Of particles remains conserved up to cyclic
2 ik:\ s—1 . . .
. e'i . ) permutations. The wave functions can be written as
ekiN=—T] e Vi, j=1,2, (35)
i=1\e
|S1,S2, . . . ,Sn)
with energy given by Eq(298).
Qeneral n The above calculation can be genera!ized for =2 D S Sey(xy, .. Xo)|X1s « v v Xn)- (43
arbitrary values oh. The ansatz for the wave function be- {c} {0
comes
HerefSey - Sci(xq, ... X,) is the amplitude of a configura-
_ i(Kp X3+~ +Kp Xn) tion where particles of sizes, . .. ,s, occupy the positions
FO, - %) ; Ay P ’ X1, ... Xn, respectively. The summatioft} extends over

(36)

where the sum extends over all permutatiénsf 1,2, . .. n.

If X,.1—x;>s fori=12,...n, itis easy to see that the

eigenvalue equatiofR0) is satisfied by the ansat36) with
energy

n
E=j§1 e(k)). (37)
If a pair of particles is at positiong;, X;.;, wherex;,
=X;+s, Eq. (20) with the ansat236) and the relation(37)
give us

A .
P1,...| PiPiygr s P (5D ke e ¥e b
Apl ..... Piy1:Pivooos P
(38)
Inserting the ansat{36) in the boundary condition
f(Xo, oo Xn Xy FN)=F(Xq, ... X)), (39
we obtain the additional relation
Ap,. ... =e*eNA, PPy (40)

If we iterate the relatior{38) n times, Eq.(40) gives us the
Bethe-ansatz equations

K\ s—1 ik ik
. n—lﬂ elkj s E++6,e'(kl+k')—elkl
ent=(-) aiky i(kj+k) _ ik

(41)

=1\e e, te_e

forj=1,2,...n. The solutiongk;} of these equations with
Eq. (37) give us the eigenenergies of the Hamiltonia.

all cyclic permutationdcy, ... ,c,} of integers{1, ... n},
and the summatioqx} extends, for a given distribution
{scl, - ,scn} of molecules, to increasing integers satisfying

leBXﬁrdscﬁC , i=1,...n-1,

i+1

(44)

d =X,—X;<N-—d .
Sc, 'S¢, n 1 Sc,rSc,

The ansatz that we expect to be valid, which replaces Eqg.
(29), is

= Sty Sn gi(kp - +kp )
- Xn) EP: Apl ..... Pne ! J
(49

WhereAi:; """ SQP and{kq, ...
n

K} are going to be fixed by

imposing that Eq.44) with Eq. (45) is a solution of the
eigenvalue equation of the general Hamilton{@n

Let us consider the eigenvectors of E@) with a differ-
ent number of particles.

n=1. For one particle on the chain the ans@#%) coin-
cides with Eq.(36) and the wave functions and energies are
given by Eqs(23) and(25), respectively.

n=2. If both particles are identicat; =s,=s, we have
the same situation considered previously in E§$)—(35).
The wave functionss,s) are given by Eq(45) with energies
given by Egs.(28) and (35). However, if the particles are
distinct, the situation is different. If the particles are located
at positionsx; andx,, with X, —x,> dsl,SZ, the ansat£45) is
valid with energy given by Eq(28) and no restrictions on
{A;’L’”{jp} are necessary. If the particles are at the closest

1 2

Furthermore, it follows from a lattice shifting that the wave distancex,=x; + dsl,SZ, Eq. (30) is replaced by
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Ef1S2(x,,x;+dg ¢ )=—€,f12(x;—1x;+dg ) If we now apply relation50) n times, we can obtain a rela-
1 1 tion between the amplitudes with the same momenta, i.e.,
—e,fsl’sz(xl,xl+d31’32+ 1)

n

+F5052(xg X, + dsl,sz)- (46) Ai,ll ''''''''' ?Sn: (— )“_1ei|22 Ve, piglkp N
Inserting in the above equation the ans@t2) and the en- -~
ergy (28), we obtain the relation x 2 > S, ke,
{sg, .. St {ST. - sy 1L
ASL'S2 — _oiVp p SS}'Sf ko —k Asivsé . (4 5.5 ShS]
P1.P2 1 253235 52'51( Py ke, e, 5, (47) _kpl)SSZ,SZ(kPZ_kpl)' : 'Ss:'s,ln,(kPn
whereWp o is given by Eq(32) and the elements of t® _ kPl)Aii ----- SFE’] ' (54)
matrix are given by Lroee
ng,g(k):ei(da’ﬁfl)kﬁa#b\ﬁ’y' (48) where we introduced the extra sum

The wave numberg,; andk, are going to be fixed by the 1= St 8 = 351*55 ko —k 55
boundary condition 3'25251 S35 7515, SZZS'{ si,s;( P Pl)' (59)

S5,S — £S1.S
210 )y FN) = 1272(X0 %), @9, order to fix the values ofk;}, we should then find the

but instead of deriving the Bethe-ansatz equationsife  €igenvaluesh (k) of the matrix
let us consider the case of genenal N

General n The ansatz45) applied to the case where two L SIS,
particles are at their closest distance gives us the generaliza- ({sHT({s"}) = " E o ,Hl Ssl' s (kPI k), (56)

tion of Eq. (47), S
_ p with s, ;=s] . We identify T(k) as the transfer matrix of an
A:;::gfpz"'__.z—e'q"’r"z Z, SZ”,B’ inhomogeneous vertex model, with inhomogeneitiés (
@.p —k), in a periodic lattice. The Boltzmann weights of the
x(kPl_sz)AﬁiIig;',%ll’,'.'.'. , (50 vertex models are given b§% and the number of distinct

vertices depends on the particular configurafitype of or-

with S given by Eq.(48). Successive applications of this den of molecules in our diffusive system. Using H48), we
equation give us in general different relations between th€an see that there exists only one nonzero element for each

amplitudes. For example, A" ~©A%.  relate to liN€ i.e.(s1, ... S[T[sz, ... Sp,S1).
A-Ba by Dperformin thle 2 Zrm tationsy In order to calculate the eigenvalugagk), we apply the
kgl kg PY P ng permutat BY  transfer matrix times in the stateé\®t: - *n, wherer is the

—Bay—Bya—yBa or aBy—ayB—yaB—yBa, and  minimum number of cyclic rotations df;, . . . S}, where
consequently thes matrix should satisfy the Yang-Baxter the configuration repeats the initial one. We may show that
[18,19 equation

TAg = A OAG (57)
2 S (ki—kp)Sh ki~ ks)S], % (Kp—ks)
'Y Also it is easy to compute
= X S (ko ka)SE (ki —kg)SI 7 (Ky— ko). (D n
Sy .8 B.8 Ar(k)zex;{i ﬁ(l—El d5|~5|+1_1),21 (k|—k)}. (58
(51) ) )

Actually the relation(51) is a necessary and sufficient con- Finally, substitutingA (kp,) in Eq. (54) we obtain the Bethe-

dition [18,19 to obtain a nontrivial solution for the ampli- ansatz equations
tudes in Eq.(50). The validity of Eqg.(51) can easily be

verified for the diagona$ matrix (48) in the problem we are eiij:eiZ%T m(—1)n-1
considering.
. n ~ i(Ki k) _ aiki
The boundary condition «TI ei(kj—k|)(s—1)€++€_el_ Tk e'_ j 59
FS1. - S(Xq, ... Xg) =520 S1S1(Xy, L. XXy i=1 6++€,el(kj+k|)—e'k'
(52) .
wherej=1,...n; m=0,1,...r—1 and
implies the relation between the amplitudes
_ S
N R S S I S5 2 B 0
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plays the role of an average molecule size of the particulaparticular value of. These equations are even simpler for the

configuration{s} of molecules. As we can see, by comparingspecial “half-filled” densityp=n/N=1/(1+5), i.e.,
Eqg. (59 with Eqg. (41), the extra phase exgnr)(m

=0,1,...r—1) givesr times more solutions of Eq59) (1-z3)"=Y,

than in Eqg.(41). This indeed should be the case since the (66)

Hilbert space associated to the Hamiltoni@h of a given e z—1

distribution of particles of sizefs,, .. . ,S,}, due to the dis- y=—2"+9]] —.

tinguishibility of the particles, ig times bigger than that of =1(z+1)

the HamlltomaI\(?) whens;=s,=- - - —sn_. Itis |_nterest|ng f we parametrize Y=—a"e"’, with a=0 and e

to observ_e thas can t.ake any non-negative rat|onal' ngmber(_ /n,r/n), the 2n rootsz; are given by

by choosing appropriatelys,, ... ,s,}. Also many distinct

gistributions of the molecules’ sizes with the same effective z :(1_yj)1/2, Zjin=—2;

s will have the same eigenenergies. o (67)
In the Appendix we explore our Bethe-ansatz solution to yj=ae’e2mi-12h =1 n.

obtain the relationship between the eigenvalues and eigen-

vectors of the Hamiltoniafi7) with different distributions of ~ For a given choicgz;} of the above set and a given value of
the molecules’ sizes. m (0,1, ...r—1), we have only two unknownsg and 0,

which are obtained from the equation

IV. THE CRITICAL EXPONENT Z n

(aeiﬁ)n:ei(277/r)m2(§+1)nH z)—1 (69)

In this section we calculate the dynamical critical expo- =i [Z|(')+1]~S.
J

nent z for the stochastic models presented in Sec. Il. This
calculation is done by exploiting its connection with the we have solved numerically the above equations for several
mass gafiGy of the corresponding Hamiltonian, values ofs, m, r, andn. The ground-state energy=0 is

B obtained by choosingh=0 in Eq.(68), and is given by the
Re(Gy)~N"*% (61)  configuration

A calculation for arbitrary values of, ,e_ and density Co={21.2,, ...z}, (69
n/N can be done systematically by using the method pre-
sented in[10]. However, since universality arguments indi- with a=6=0. In order to find the first excited state, we
cate thatz should be independent of the particular values ofshould consider different choices {of;} and different values
€, ,e_, andn, as long as, #e_, we are going to restrict of m. Sincez;+z,,;=0, the energy increases as we take, in
ourselves, as in7], to the simplest case where =0,¢e., the configurationgz;}, values ofz; wheren<j<2n. There-
=1. A general discussion for the other cases, which does ndére, configurationgz} associated with low energies are
change our results, is given at the end of the Appendix. De-
fining the variables Ci={z1,25, ... Zy-1.Zn+1} (70)

zj=2e"%i—1, (62 and

C_1={zy, ... .Z2n_1:24,Zop}- 71
the energie$37) and momentd42) are given by 1={z n-1:Zn:Z2n} 7D

These configurations, from Ed64), correspond to states
" with momentum—27/N and 27/N, respectively. Our nu-
E:Zl (1-2z)/2, (63) merical results show that the energy corresponding to the
. configurationC, with m#0 behaves for larg&l as

n

e P=T] (1+z)/2, (64) a4 .7 _
iy j Ecym T Ir(~s+1)m' m=12,.... (72

respectively. 'The{zj} variables should satisfy the Bethe- On the other hand, the configurati@y or C_;, for suffi-
ansatz equation&9), ciently large values oN, produces the lowest energy when

. m=0, independently o§,r, and behaves as

= —i2m Z|_1
(1+zZ)N " "(1-z)"=-2Ne ' /r)mlﬂ ™ _— 3
1(z+1) Ec o~ —+i—, z==, y=1 (73)
(65 =%z v 2’ '
where j=1,...n, m=0,1,...y—1. It is interesting to whereay, and b, are constants. The energies for different

note that these equations are simpler than the usual Bethealues ofm but with configuration<C_.; also behave simi-
ansatz equations appearing in other exact integrable syster@sly to Eq. (73). Comparing Eq(73) with Eq. (72), we see
since the right-hand side of E¢65) is independent of the that the gap is given blfc, o and is real only for the special
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TABLE I. Examples of finite-size estimates for the amplitudgs b, and the exponentsandy in Eq. (73). These estimates correspond
to the cases=0.25 ands=2.5. The calculated analytical results in the>c are also shown in the last line of this table.

'$=0.25 s=25
n =l bo z Y Qo bo z Y
10 2.522601 —0.916488 1.586388 0.934332 2.495387 0.654527 1.576255 0.934156
50 2.351517 —0.941304 1.521414 0.997428 2.345566 0.672351 1.518526 0.997403
100 2.326504 —0.942187 1.510838 0.999374 2.323540 0.672989 1.509564 0.999367
150 2.318133 —0.942349 1.507253 0.999724 2.316160 0.673106 1.506402 0.999721
200 2.313942 —0.942406 1.505450 0.999846 2.312463 0.673146 1.504811 0.999844
250 2.311425 —0.942432 1.504365 0.999902 2.310243 0.673165 1.503853 0.999900
300 2.309747 —0.942446 1.503640 0.999932 2.308737 0.673175 1.503189 0.999957
400 2.307648 —0.942460 1.502733 0.999962
500 2.306388 —0.942466 1.502186 0.999976
800 2.304498 —0.942473 1.501364 0.999988
Exact 2.301346 —0.942478 1.5 1 2.301346 0.673198 1.5 1

cases=1, treated in7]. The values ofa and ¢ that corre- V. CONCLUDING REMARKS

spond to the first excited state behave asymptotically as ~ We have solved exactly a general asymmetric diffusion
problem where the particles may have distinct and arbitrary
integer sizes. We also show in Sec. Il that these diffusion
~ models are related to generalized growth models. Since
(s—1) +o(n~3? through diffusion the particles do not interchange positions, a
n372 ' given orders,, . . . ,s,} of the distribution of the molecules’
(74) sizes on the lattice is fixed, up to cyclic permutations. A
parameter which is proportional to the excluded volume for

the particles is the average size of the molecslgéven by
where 8 and a are constants. In order to illustrate our nu- Eq.(60). In the case of the simple exclusion problem, all the

a=1+§+o(n*1), =+«

merical results, we show in Table | the finite-size estimategnolecules have the same unity sigg=s,=---=s,=1,
for the amplitudes,,b, and the exponentsand y defined  which givess=1. On the other hand, if all the particles have
in Eq. (73). no size, we have=0 and there is no excluded volume. By

Accepting the behaviof74) for the values o and ¢ for ~ choosing a suitable distributiofs} of the molecules’ sizes,
the first excited state, we also used the same procedure aswe may change almost continuously in the bulk limiN
Gwa and Spohri7] in order to show analytically that =~ —oo. Exploiting the connection between the dynamical criti-

—2% a,=2.301 345 8 ..., independently of the value f cal _exponemz_and tr;e mass gap of the_ related quantum
andby= (3= 1)/[2(E+1)]. In the last line of Table | we chain, we obtglned= 5 for all the models, mdependen.tly.of
show the exact results obtained analytically the parametes measuring the excluded volume. This im-

‘ plies that, at least in one dimension, the excluded volume

These results indicate that all these models with an arb'éffect is irrelevant for dynamical systems in the KPZ univer-

trary mixture of molecules of different sizes, as well as thesality class.

corresponding generalized growth models, exhibit a univer- e also show(see the Appendixthat the wave functions
sal behavior with a KPZ-type of dynamical behavior. In the of the models with an arbitrary distribution of the molecules’
Appendix we show that for general valueseaf, e_, andn,  sizes can be related to those of a simple asymmetric exclu-
the wave functions of Eq7) for arbitrary distributions of the sion problem, in a distinct lattice size. This implies that con-
molecules’ sizes are exactly related. This implies that condiditional probabilities and correlation functions of these mod-
tional probabilities and correlation functions for arbitrary els are exactly related.

distribution {s} are exactly related to the simple exclusion

problem{s;=s,=- - -s,=1}. The eigenvalues of these mod- ACKNOWLEDGMENTS

els are exactly related in the case of free boundaries. In the This work was supported in part by Conselho Nacional de
case in which we have a periodic lattice, the eigenvalues abesenvolvimento Cierfico e Tecnolgico, CNPq, Brazil, by
Hsh are exactly related to the asymmetdX Z chain with  FINEP, Brazil, and by the Russian Foundation of Fundamen-
twisted boundary conditiogh proportional to the momentum tal Investigation(Grant No. 99-02-17646

of the first excited state. Since the momentum of this state is

P=2x/N, the effect of the twisted angle should not affect APPENDIX A: EXACT SPECTRAL RELATIONS

the leading order in the mass gap calculations. This implies BETWEEN THE MODELS

that for arbitrary values ofe,, e_, and densityn, the WITH DISTINCT MOLECULE DISTRIBUTION

leading-order results of the re_al part of the gap are the same |In this appendix we are going to show how the eigenval-
as those calculated systematically] ir0]. ues and eigenvectors of the general Hamiltor(i@gnwith a
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different distribution of molecules are related to those of thewhere nowx; =

simple asymmetric exclusion Hamiltonidd). Let us con-

sider initially the case of free boundary conditions. In thisgycjusion HamiltoniarH™

case we have to specify, for a given lattice di;ethe occu-
pation at the border of the lattice, i.e., the mininxaland
maximumxg coordinates in which we may put a molecule of
sizes. As an extension of Eq2) we define these coordi-

nates, for the model with a distributiofs, ,s,, ... ,s,} of
molecules, as
X| = d51’0+ 551‘0: Int[(81+ l)/2] + 63:“0,
(A1)
Xp=N-— (dsn,O_ 1)- 6sn,0-
If X1, ... X, are the vectors corresponding to the coordi-

nates of the particles of siz§s,, . .. ,s,}, the application of
the Hamiltonian(7) with free ends in a given vector can be
written as

n-1

Higlxs, - :Xn>:_i21 €+ 0(Xiv1—X—dg 5, ,)

XX, oo X1 XiF L Xih 1y« « - Xp)

n

Xn)] —E €_0(Xi—Xi_1

_|Xl,

—dg_ X -

n>_
— e 00Xl [xa, - -
n>] —€e_0(X1—X))

1Xo, oo Xp)—

Xi—1,X;

i—1

=1 Xit1s oo Xy —|Xq, .-

Xn)]
Xn—1,X,+1)
—[Xq, ... X
X[y~ X1, - Xl
(A2)

where #(x) =0 for x<0 and#(x)=1 for x>0 is the stan-
dard step function.
If we now make the change of coordinates

i—1

Xif:xi—x|—]_21 ds, ., s (A3)
we can rewrite Eq(Al) as
n—1

Higlx1, ... Xy =~ 21 €. 0(x,—x —1)

XOIXTy o e XX+ 1, X))

n

=X, ... ’X’/‘>]_Zg €_0(x{ —x{_1—1)

XOXTs oe e X X = LX{ gy oo X0

X X € OO X))

XOIXT, e Xpo g X 1) =[X7, « o X))

—€_0(X1—X)[IX1—1X5, ... Xn)

—IX1, o XD, (A4)
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1 andXp=Xg—x— 32 ’1ds 5. tN=N"
But this is exactly the appllcatlon of the S|mple asymmetric
{s,=---=s,=1) in a lattice sizeN'.

Consequently, for free ends there exists a one-to-one corre-
spondence between the eigenvalues and eigenvectors of our
general Hamiltoniari7) with an arbitrary distribution of par-
ticle sizes with that of the standard simple diffusion problem,

in a lattice size which depends on the volume excluded due
to the molecules’ sizes, i.e.,

Hig(MN)=Hf g _..._s —5(n,N"), (A5)

n—1
N'=N— Edss

o +1

dslvo_ dsn,0+ n+1-— 53110_ 5Sn,0 .
(A6)

The Bethe-ansatz solution of theXZ chain with surface
fields given in[20], after the canonical transformatighl),

can be easily exported for our general mo¢@®l with free
ends. As observed if21], the simple asymmetric diffusion
Hamiltonian (1), with free boundaries, has a quantum
UySU(2) symmetry withq= e, /e_. This symmetry im-
plies an exact form for the ground-state wave function. Us-
ing this wave function in the relatiofA3) we obtain the
ground-state wave function for the general Hamilton{@h
with free ends,

vp-3

[X1,X5, . ..
{xp i

Xn)-

(A7)

)x +i— EJ 1dj’sj+l

IS

Let us now consider the case of the Hamiltoni@hwith
twisted boundary conditions specified by the anglevhich
in general is a complex number,

Eﬁ’glzeid)Eva E%,[il:ewagﬁ,

(A8)
B#OES%, —ES°, ERf,—EfP.
The periodic case treated in Sec. lll corresponds to the case
where¢=0. The Bethe-ansatz equations for these boundary
conditions can be obtained by changing EG®) and (53),
and are given by
e, +e_elkith) gk

n
iKiN' Qipm— (_ 1\n—1
et e m ( 1) H I(kj+k|)—e|k|,

I=1e,+e_e€

(A9)
where

- 21
¢+P(s—1)+ -m

N'=N-n(s—1), ¢n=

(A10)

=0,1,...N-1

(A11)

2
P=> k mod2)= le, |
]

is the momentum and,s are defined in Eqs(57)—(60).
These equations give us the following equivalence between
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the eigenspectra of the general Hamiltoni@hwith bound- P! (xy, ... Xy:t|ly1, . .. Yn;0), which gives the probabil-
ary condition ¢, in the eigensector witln particles and a ity of finding particles of sizes; , initially (t=0) aty; and at
given momentéP: timetatx; (i=1,...,n). These Green’s functions for the
different models satisfy

r-1
¢ - & '
H{Sl ..... Sn}(N,P,n)_mZZO H{ST:SZZH':SHZJ‘}(N ’P'n)' P{Sl ’’’’’ Sn}(xl! s an;t,ylv <o iYn IO)
(A12) =Plr= ==t Xty . Ye0),
where in the right-hand side we have the eigenspectra of the (A15)

asymmetric simple exclusion Hamiltonidf) with twisted

boundary conditionp,,. In the right-hand side of the above wherex, andy/ are related te; andy; as in Eq.(A3). The
equation we must also add several eigenspectra, dependiafpove result generalizes that obtained by Sasamoto and Wa-
on the value of (see Sec. Il), and this is due to the distin- dati[12] for the case in which we have a fully asymmetric
guishibility of the particles in the Hamiltonian on the left- model (e_=0) and molecules of identical sizes=s,

hand side of the equation. =...=5,=S.

Our Bethe solutions presented in Sec. Il also give us a Calculation involving eigenvalues, like the calculation of
connection between the wave functions of the models. Théhe exponent we did in Sec. IV for the fully asymmetric
eigenstates related by EGA12), apart from an overall nor- model (e_=0), should be translated with care among the
malization, satisfy different models. The Bethe-ansatz equati¢A9) tell us
that the eigenvalues of our general mod@l in a periodic
n}(xl,xz, cee Xp) lattice of sizeN(¢=0) are the same as those of the simple
’ exclusion Hamiltonianl) in a lattice of sizeN’zN—n(E

Z‘I’{stz:,_=Sn=1}(X£,X§, coXp), (A1) —1) and twisted boundary conditiong,=P(s—1)
+(2#/r)m, m=0,1,...r—1. However, the eigenvalues
where of the simple asymmetric exclusion Hamiltoniél) depend
on the boundary condition. Our results of Sec. Ill, although
) ) valid only for e_ =0, indicate that the effect of the boundary
X=Xy, X =X+i—1- 21 dsj Sip1 i=2,...n angle in the finite-size corrections is of higher order than the
= (A14) leading corrections for the first excited state, since in this
case dy,= ¢o=2m(s—1)/N. This implies that for an arbi-
The results(A5), (A13), and(A14) imply that any calcula- trary distribution of molecules and arbitrary valueseqf,e__
tion involving only wave functions can be straigthforwardly and densities we can use the results obtaindd 0f for the
translated for arbitrary distributiods} of the molecules’ leading order of the real part of the mass gap, which gives a
sizes. An example of this is theparticle Green’s function universal dynamical critical exponent=3 of KPZ-type.
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